Archive

Archive for the ‘图形编程’ Category

如何在八叉树里寻找离某位置最近的点?

July 29th, 2021 No comments

第一步:如果给定点 z 在八叉树包围盒内就从所属的最末端的子包围盒叶子节点开始,如果在八叉树外的话就从任意最靠近的叶子节点开始,先找一个最靠近 z 的候选点 A,如果叶子节点包围盒是空的,就递归向上,总之先找到第一个候选点 A。

第二步:以 z 为圆心,z 到 A 的距离为半径,做一个球体 S,把球体 S 同八叉树求交(离 z 最近的点一定落在这个球体范围内),筛选出有交集的叶子节点包围盒,然后迭代这些叶子节点包围盒里的点,一旦找到更近的就缩小球的范围,这样就能找到离 z 最近的点了。

如果要找前 k 个距离最近的点,你需要维护一个长度为 K 的优先队列(或者最大堆),在找到最近邻居的基础上,将兄弟节点邻近的候选点都填充到队列里,直到队列里装满 k 个点,此时以 z 为圆心,队列里第 k 个离 z 最近的点为半径,对八叉树做一次范围搜索(前 k 个点一定落在该范围内),搜索过程中不断更新优先队列并及时根据最新的第 k 个点离 z 的距离调整半径。

Categories: 图形编程 Tags:

如何使用 C++ 写一个可编程软件渲染器?

September 24th, 2020 No comments

今天你想用最新的 D3D12 画一个三角形,少说也要上千行代码了,对于初学者来讲,这个门槛是非常高的,太多干扰了,而一千多行代码,已经足够你重头实现一个简易版 D3D 了,为什么不呢?比起从图形 API 入门,不如从画点开始,同样一千行代码,却能让你对 GPU 的工作原理有一个直观的了解。

因此,为了让希望学习渲染的人更快入门,我开源了一个 C++ 实现可编程渲染管线的教程:

那么网上软件渲染器其实不少,这个 RenderHelp 和他们有什么区别么?区别有三:

第一:实现精简,没依赖,就是一个 RenderHelp.h 文件,单独 include 它就能编译了,不用复杂的工程,导入一堆源文件,vim/vscode 里设置个 gcc 命令行,F9 编译单文件即可。

第二:模型标准,计算精确,网上很多软渲染器实现有很多大大小小的问题:比如纹理不是透视正确的,比如邻接三角形的边没有处理正确,比如 Edge Equation 其实没用对,比如完全没有裁剪,比如到屏幕坐标的计算有误差,应该以像素点方框的中心对齐,结果他们对齐到左上角去了,导致模型动起来三角形边缘会有跳变的感觉,太多问题了,对于强迫症,画错个点都是难接受的,RenderHelp 采用标准模型,不画错一个点,不算错一处坐标。

第三:可读性高,全中文注释,一千多行代码 1/3 是注释,网上很多同类项目,属于作者自己的习作,重在实现,做完了事,注释量不足 5%,一串矩阵套矩阵的操作过去,连行说明都没有,你想搜索下相关概念,连个关键字都不知道。RenderHelp.h 是面向可读性编写的,虽然也比较小巧,但重点计算全部展开,每一处计算都有解释。某些代码其实可以提到外层运行更快些,但为了可读性,还是写到了相关位置上,便于理解。

渲染效果图片:

使用很简单,include 项目内的 RenderHelp.h 即可,VS 和 PS 之间传参,主要使用一个 ShaderContext 的结构体,里面都是一堆各种类型的 varying:

// 着色器上下文,由 VS 设置,再由渲染器按像素逐点插值后,供 PS 读取
struct ShaderContext {
    std::map<int, float> varying_float;    // 浮点数 varying 列表
    std::map<int, Vec2f> varying_vec2f;    // 二维矢量 varying 列表
    std::map<int, Vec3f> varying_vec3f;    // 三维矢量 varying 列表
    std::map<int, Vec4f> varying_vec4f;    // 四维矢量 varying 列表
};

外层需要提供给渲染器 VS 的函数指针,并在渲染器的 DrawPrimitive 函数进行顶点初始化时对三角形的三个顶点依次调用:

// 顶点着色器:因为是 C++ 编写,无需传递 attribute,传个 0-2 的顶点序号
// 着色器函数直接在外层根据序号读取响应数据即可,最后需要返回一个坐标 pos
// 各项 varying 设置到 output 里,由渲染器插值后传递给 PS 
typedef std::function<Vec4f(int index, ShaderContext &output)> VertexShader;

每次调用时,渲染器会依次将三个顶点的编号 0, 1, 2 通过 index 字段传递给 VS 程序,方便从外部读取顶点数据。

渲染器对三角形内每个需要填充的点调用像素着色器:

// 像素着色器:输入 ShaderContext,需要返回 Vec4f 类型的颜色
// 三角形内每个点的 input 具体值会根据前面三个顶点的 output 插值得到
typedef std::function<Vec4f(ShaderContext &input)> PixelShader;

像素着色程序返回的颜色会被绘制到 Frame Buffer 的对应位置。

完整例子很简单,只需要下面几行代码就能工作了:(点击 Read more 展开)

Read more…

Categories: 图形编程 Tags:

OpenGL / DirectX 如何在知道顶点的情况下得到像素位置?

August 13th, 2020 No comments

DirectX 和 OpenGL 是如何得知对应屏幕空间对应的纹理坐标和顶点色的呢?一句话回答就是光栅化。

具体一点,实现的话,一般有两种方法:

Edge Walking

基本上所有基于 CPU 的软件渲染器都使用 Edge Walking 进行求解,因为计算量少,但是逻辑又相对复杂一点,适合 CPU 计算。具体做法分为三个阶段:

第一阶段:拆分三角形,将一个三角形拆分成上下两个平底梯形(或者一个),每个梯形由左右两条边和上下两条水平线(上底,下底)表示。

普通三角形可以拆分成上下两个平底三角形,不管是上面的那一半还是下面的那一半,都可以用一个平底梯形来表示(即上底 y 值 和下底 y 值,以及左右两边的线段),这样再送入统一的逻辑中渲染具体某一个平底梯形。

第二阶段:按行迭代,然后以梯形为单位进行渲染,先从左右两条边开始,一行一行的往下迭代,每迭代一次,y坐标下移1像素,先根据左右两边线段的端点计算出左右两边线段与水平线 y 的交点:

然后继续插值出左右两边交点的纹理坐标,RGB 值 之类的 varying 型变量,然后进入扫描线绘制阶段。

第三阶段:按像素迭代,有了上面步骤计算出来的一条水平线,以及左右端点的各种 varying 变量的值,那么就进入一个 draw_scanline 的紧凑循环,按点进行插值,相当于 fragment shader 干的事情。

计算 varying 变量插值的时候需要进行透视矫正,根据平面方程和透视投影公式,可以证明屏幕空间内的像素和 1/w 是线性相关的,而三维空间的 x / w, y / w, z / w 和屏幕空间也是线性相关的,也即各个 varying 变量按屏幕空间插值时需要先 / w,然后按照屏幕空间每迭代一个点时再除以最新的(1/w)就可以还原改点的真实 varying 变量值。

这部分可以参考我写的 700 行软件渲染器:

上面是第一种方法。

Edge Equation

这个方法简单粗暴,虽然计算量较大,但是计算方法简洁而单一,适合 GPU 实现,即按照三角形外接矩形(或者屏幕上任意矩形),两层 for 循环迭代每一个一个像素,先走一遍 Edge Equation 判断是否再三角形范围内,如果否的话就跳出,如果是的话,使用插值方式得到各个 varying 变量的值(纹理坐标,RGB顶点色和法线等)。

由于没有像 Edge Walking 一样迭代左右两边的每个像素,所以插值使用了一种“重心坐标”的公式,直接参考三个顶点的位置和当前点重心坐标来插值:(点击 Read more 展开)

Read more…

Categories: 图形编程 Tags:

256字节3D程序是如何实现3D引擎的呢?

August 26th, 2016 No comments

网上有很多 256 个字节实现图形渲染的 “引擎”,他们的原理是什么呢?

  1. 全都不是基于正统3D引擎的多边形绘制,而是基于少数特定情况的简化版光线跟踪算法
  2. 只能渲染特定几种物体,并不能渲染通用物体。
  3. 无资源或者少资源(基本靠生成),重复
  4. 16位代码,COM格式的可执行(没有PE头,代码数据和栈都在一个段内,指针只有两字节)
  5. 尽可能用汇编来写

你自己花点时间也能做出来,

具体解释一下:

简化版的 raycasting,实现起来的代码量比通用的多边形绘制方法至少 N个量级。

基本的光线跟踪,在 320×200 的解析度下,从摄像机中心射出 320×200条光线,屏幕上每个点对应一条光线,首先碰撞到的物体的位置颜色,就是屏幕上这个点的颜色:

可以描述为下面这段代码:

for (int y = 0; y < 200; y++) {
    for (int x = 0; x < 320; x++) {
        DWORD color = RayCasting(x, y); 
        DrawPixel(x, y, color);
    }
}

其中函数 RayCasting(x, y) 就是计算从视点开始穿过屏幕上 (x, y)这个点的射线。

所谓简化版的光线跟踪,是只需要实现特定物体,以及针对特定条件,比如早年游戏里面用的最多的实时光线跟踪绘制地形高度图的(比如三角洲特种部队,xxx直升飞机):

比如云风 2002年写过的文章:3D地表生成及渲染 (VOXEL)
实现上述效果的地形渲染,只需要 200多行 C 代码
使用标准三角形渲染这样的地形(软件渲染),代码少说也上千行了,使用标准的光线跟踪少说也要 500行左右。

Read more…

Categories: 图形编程 Tags:

3D 图形光栅化的透视校正问题

August 18th, 2016 1 comment

写了文章《如何写一个软件渲染器》以后,不少网友希望进一步解释背后的数学公式,询问以及自己加一个 phong 光照该如何加,本文将对透视纹理映射的插值原理做一个简单的解释,希望能帮助到大家:

透视纹理绘制发生在最后阶段,坐标已经完成projection,剔除,裁剪了,然后顶点/w,开始批量绘制扫描线之前,这时候开始计算纹理的位置。

使用w还是用z,关系不大,早年的3d引擎,直接/z的,只是后面标准化了以后,发现w更好用,可以同时表示透视投影和正交投影。同时顶点经过标准的mvp矩阵运算后,w和z是承线性关系的,方便对z/w做 [0,1] 的cvv裁剪。你可以理解成w就是另外一个z。以前屏幕坐标:

x' = x / z * d + A
y' = y / z * d + A

现在是

x' = x / w * d + A
y' = y / w * d + A

然后绘制纹理前,你需要先证明屏幕上两个点之间,1/w 承线性关系,即屏幕上两个点X1′, X2’之间任意取一点X3’,他们的(1/w)值的变化比例相同,即在 t 取任意值有:

x3' = x1' + (x2' - x1') * t
(1 / w3) = (1 / w1) + ((1 / w2)  - (1 / w1)) * t

再根据他们在同一个平面上,证明屏幕上两个点之间,u/w, v/w 承线性关系,即 t 取任意值有:

x3' = x1' + (x2' - x1') * t
(u3 / w3) = (u1 / w1) + ((u2 / w2) - (u1 / w1)) * t
(v3 / w3) = (v1 / w1) + ((v2 / w2) - (v1 / w1)) * t

具体到代码里面的做法就是三角形的三个顶点/w以后,u和v也同时/w,然后把w换成自己的倒数:w = 1 / w,及把顶点数据:

(x, y, z, w) + (u, v)

变换成:

(x / w, y / w, z / w, 1 / w) + (u / w, v / w)

然后用 1/w, u/w, v/w进行屏幕空间插值,具体绘制某个点的时候,先从1/w求倒得到w,然后乘以 u/w, v/w得到 u, v,就可以了。

更进一步,可以证明,所有在三维空间里同x,y,z成线性关系的变量,不管是纹理坐标,顶点色或者法向还是其他,他们在屏幕空间里的插值规则都可以通过:插值前先/w,插值后要用时再 * w得到具体值,然后我们把这类三维空间里同x,y,z成线性关系的变量统进行统一的批量处理,和OpenGL的 attribute,varying处理方法相同。

相关阅读:
如何写一个软件渲染器
还原被摄像机透视的纹理

Categories: 图形编程 Tags:

如何用 OpenGL 封装一个 2D 引擎?

August 11th, 2016 No comments

如何正确的使用 OpenGL “封装一个2D引擎” ?以下几个步骤:

1. 别用什么 glBegin/glEnd,至少写兼容GLES2代码,不然手机上跑不起来。
2. 用两个三角形的纹理拼凑出一个2D的图块出来,不是搞啥每个点自己画。
3. 2D图像库基本就是要把显示对象树给做出来就得了。
4. 每个显示对象除了自己外还有很多儿子节点。
5. 每个显示对象有一个变换矩阵,用来设置位置和角度还有缩放,最后是节点的显示效果。
6. 渲染的时候需要从远到近排序,并尽量归并相同效果(fs)及纹理。
7. 把常用纹理管理起来,提供资源加载,可以换进换出,提供类 LRU的机制。
8. 在此基础上提供一些动画(精灵)和场景控制的api,提供显示字体,即可。

最后推荐两个现成的轻量级2D引擎供阅读:

StarEngine:GitHub – StarEngine/engine: Crossplatform C++11 2D Game Engine for Desktop and Mobile games

EJoy2D:GitHub – ejoy/ejoy2d: A 2D Graphics Engine for Mobile Game

就是这样。

Categories: 图形编程 Tags:

计算机底层是如何访问显卡的?

June 17th, 2016 1 comment

以前 DOS下做游戏,操作系统除了磁盘和文件管理外基本不管事情,所有游戏都是直接操作显卡和声卡的,用不了什么驱动。

虽然没有驱动,但是硬件标准还是放在那里,VGA, SVGA, VESA, VESA2.0 之类的硬件标准,最起码,你只做320x200x256c的游戏,或者 ModeX 下 320x240x256c 的游戏的话,需要用到VGA和部分 SVGA标准,而要做真彩高彩,更高分辨率的游戏的话,就必须掌握 VESA的各项规范了。

翻几段以前写的代码演示下:

例子1: 初始化 VGA/VESA 显示模式

基本是参考 VGA的编程手册来做:

INT 10,0 - Set Video Mode
    AH = 00
    AL = 00  40x25 B/W text (CGA,EGA,MCGA,VGA)
       = 01  40x25 16 color text (CGA,EGA,MCGA,VGA)
       = 02  80x25 16 shades of gray text (CGA,EGA,MCGA,VGA)
       = 03  80x25 16 color text (CGA,EGA,MCGA,VGA)
       = 04  320x200 4 color graphics (CGA,EGA,MCGA,VGA)
       = 05  320x200 4 color graphics (CGA,EGA,MCGA,VGA)
       = 06  640x200 B/W graphics (CGA,EGA,MCGA,VGA)
       = 07  80x25 Monochrome text (MDA,HERC,EGA,VGA)
       = 08  160x200 16 color graphics (PCjr)
       = 09  320x200 16 color graphics (PCjr)
       = 0A  640x200 4 color graphics (PCjr)
       = 0B  Reserved (EGA BIOS function 11)
       = 0C  Reserved (EGA BIOS function 11)
       = 0D  320x200 16 color graphics (EGA,VGA)
       = 0E  640x200 16 color graphics (EGA,VGA)
       = 0F  640x350 Monochrome graphics (EGA,VGA)
       = 10  640x350 16 color graphics (EGA or VGA with 128K)
         640x350 4 color graphics (64K EGA)
       = 11  640x480 B/W graphics (MCGA,VGA)
       = 12  640x480 16 color graphics (VGA)
       = 13  320x200 256 color graphics (MCGA,VGA)
       = 8x  EGA, MCGA or VGA ignore bit 7, see below
       = 9x  EGA, MCGA or VGA ignore bit 7, see below

    - if AL bit 7=1, prevents EGA,MCGA & VGA from clearing display
    - function updates byte at 40:49;  bit 7 of byte 40:87
      (EGA/VGA Display Data Area) is set to the value of AL bit 7

转换成代码的话,类似这样:

// enter standard graphic mode
int display_enter_graph(int mode)
{ 
    short hr = 0;
    union REGS r;
    memset(&r, 0, sizeof(r));
    if (mode < 0x100) { 
        r.w.ax = (short)mode;
        int386(0x10, &r, &r);
        r.h.ah = 0xf;
        int386(0x10, &r, &r);
        if (r.h.al != mode) hr = -1;
    }   
    else { 
        r.w.ax = 0x4f02;
        r.w.bx = (short)mode;
        int386(0x10, &r, &r);
        if (r.w.ax != 0x004f) hr = -1;
    }
    return hr;
}

Read more…

Categories: 图形编程 Tags: ,

超越 SDL/DirectDraw/GDI 性能的位图库

April 29th, 2016 2 comments

开源一个高性能位图库,之前对我的二维图形库 pixellib 进行了精简和重写,最终形成一个只包含两个文件(BasicBitmap.h, BasicBitmap.cpp)的图形基础库。

在今天 GPU 绘制横行天下的时候,任然有很多时候需要使用到纯 CPU实现的图形库,比如图像处理,视频预处理与合成,界面,以及GPU无法使用的情况(比如某个应用把gpu占满了,或者无法通过gpu做一些十分灵活的事情时),纹理处理,简单图片加载保存等。

支持 SSE2/AVX 优化,比 DirectDraw 快 40%(全系统内存绘制),比 SDL 快 10%,比GDI快 38%。如果你需要一个方便的高性能位图库,足够高性能的同时保证足够紧凑。

如果你有上述需求,那么你和我一样需要用到 BasicBitmap,只需要把 BasicBitmap.h/.cpp 两个文件拷贝到你的代码中即可。我正是为了这个目的编写了这两个文件。

特性介绍

  • 高度优化的 C++ 代码,可以在任意平台编译并运行
  • 多重像素格式,从8位到32位:A8R8G8B8, R8G8B8, A4R4G4B4, R5G6B5, A8, 等.
  • Blit (Bit Blt) ,包含透明和非透明的模式。
  • 像素格式快速转换
  • 使用不同的 Compositor 进行 Blending
  • 使用不同的过滤器进行缩放(nearest, linear, bilinear)
  • 高质量位图重采样(Bicubic/Box)
  • 支持从内存或者文件直接读取 BMP/TGA 文件
  • 支持从内存或者文件直接读取 PNG/JPEG 文件(Windows下)
  • 保存图片为 BMP/PPM 文件
  • 核心绘制函数可以被外部实现通过设置函数指针重载(比如 SSE2实现)
  • 比 DirectDraw 快 40% 的性能进行绘制(打开 AVX/SSE2支持)
  • 比 GDI 的 AlphaBlend 函数快34%的性能进行混色
  • Self-contained, 不依赖任何其他第三方库
  • 高度紧凑,只需要拷贝 BasicBitmap.h/.cpp 两个文件到你项目即可

项目地址

Blit 性能比较

Full window (800×600) blitting (both opacity and transparent), compare to GDI/SDL/DirectDraw:

32 Bits Blit Opacity Transparent
BasicBitmap C++ fps=2325 fps=1368
BasicBitmap AVX/SSE2 fps=2904 fps=2531
GDI fps=2333 fps=1167
SDL fps=2671 fps=1015
DirectDraw fps=2695 fps=2090

Note: use BltFast with DirectDrawSurface7 in System Memory to perform Opacity & Transparent blit. BitBlt and TransparentBlt(msimg32.dll) are used in the GDI testing case.

16 Bits Blit Opacity Transparent
BasicBitmap C++ fps=4494 fps=1253
BasicBitmap AVX/SSE2 fps=9852 fps=2909
DirectDraw BltFast fps=5889 fps=861

Blitting performance in SDL & GDI are slower than DirectDraw, just compare to ddraw as well.

8 Bits Blit Opacity Transparent
BasicBitmap C++ fps=11142 fps=1503
BasicBitmap AVX/SSE2 fps=18181 fps=5449
DirectDraw BltFast fps=14705 fps=4832

DirectDrawSurface in Video Memory takes the benefit of hardware acceleration which is definitely faster than BasicBitmap. If you really need hardware acceleration, use OpenGL/DX as well.

BasicBitmap is a software implementation which aims to achieve the best performance in all other software implementations: like GDI/GDI+, SDL/DirectDraw in System Memory, for examples.

So just compare to DirectDrawSurface in System Memory. Use it in the condition that you only need a lightweight software solution: GUI/Cross Platform/hardware unavailable/image processing/video compositing, etc.

混色性能比较

SRC OVER FPS
BasicBitmap C++ 594
BasicBitmap SSE2 1731
GDI (msimg32.dll) 1137

note: 800×600 full window src-over blending vs GDI’s AlphaBlend function (in msimg32.dll).

Categories: 图形编程 Tags: , ,
Wordpress Social Share Plugin powered by Ultimatelysocial